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Abstract
We provide a relatively simple approach to Bäcklund transformations for the
derivative nonlinear Schrödinger equation. By iteration it leads to compact
N-soliton formulae both with asymptotically vanishing and non-vanishing
amplitudes. The phenomenology of these solutions is discussed and illustrated
in some detail.

PACS numbers: 02.30.Ik, 42.81.Dp, 52.35.Bj

1. Introduction

The derivative nonlinear Schrödinger (DNLS) equation,

qt + iqxx + (q2q∗)x = 0 (1)

has attracted considerable attention both from the theoretical point of view and with respect
to physical applications. Here the star means complex conjugation, and subscripts x, t denote
derivatives.

In plasma physics it has long been known that the DNLS equation governs the evolution
of small but finite amplitude Alfvén waves propagating quasi-parallel to the magnetic field in
a low-β plasma [1–4], β being the ratio of kinetic to magnetic pressure. Recently it was shown
[5] that the same equation describes the behaviour of large-amplitude magnetohydrodynamic
waves propagating in an arbitrary direction with respect to the magnetic field in a high-β
plasma as well. Further, the filamentation of lower-hybrid waves can be modelled by the
DNLS equation [6], and dark DNLS solitons have been proposed for the interpretation of
‘magnetic holes’ in space plasmas [7].

In nonlinear optics the propagation of light pulses in an optical waveguide is described
by the usual (cubic) nonlinear Schrödinger (NLS) equation. For very short pulses the typical
Kerr nonlinearity has to be supplemented by a derivative term [8, 9]. As was first shown by
Ichikawa et al [10] that the NLS equation generalized in such a way may be transformed to
the DNLS equation.
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Integrability in the sense of the inverse scattering method was shown for the DNLS
equation by Kaup and Newell [11]. In the same paper integral equations of Gelfand–Levitan–
Marchenko (GLM) type were established and used to get a one-soliton solution over vacuum.

The first N-soliton formula for the DNLS equation was established by Nakamura and Chen
[12] by use of Hirota’s bilinear transform method. On the basis of Darboux transformation
technique, Huang and Chen [13] derived an N-soliton formula in terms of determinants. A
related comment by Xiao [14] stresses on a parallel treatment of Darboux transformations for
NLS and DNLS equations. All solutions given in the above-quoted papers are asymptotically
vanishing.

Kawata and Inoue [15] succeeded in applying the inverse scattering technique to the
problem with a finite-asymptotic wave, to get the related GLM equations and to derive bright
and dark solitons as well as breather-type solitons called paired solitons by these authors.
This procedure, however, is rather laborious and does not seem well suited for establishing
convenient N-soliton formulae. Eichhorn [16] derived a Bäcklund transformation for the
generalized NLS equation with the usual non-derivative third-order term besides the derivative
term, and arrived at an N-soliton formula in determinant form. An interesting method to get
Bäcklund transformations from gauge transformations was presented by Kundu [17] and
applied, in particular, to the DNLS equation. It seems, however, not easy to get explicit
formulae for iterations.

Kamchatnov developed a method for finding periodic solutions of several integrable
evolution equations and applied this method to the DNLS equation [18–20]. One-soliton
solutions with zero or nonzero asymptotics are found as limiting cases. The Cauchy problem
for the DNLS equation has been discussed by Hayashi and Ozawa [21]. The formation of
solitons on the sharp front of an optical pulse in a fibre was treated on the basis of the DNLS
equation by Kamchatnov et al [22].

In the present paper we offer a relatively simple and elementary approach to
Darboux/Bäcklund transformations which, by iteration, leads to N-soliton formulae of a rather
transparent structure, and we demonstrate that these formulae are well suited for generating
computer pictures of N-soliton states up to N = 8, at least. The principal features of our
procedure have been outlined already in [23]. In a recent paper [24] the same method has been
applied to second-harmonic generation with account of the Kerr effect.

Our method works for a finite background as well as with vacuum asymptotics. We make
use of Vandermonde-type determinants [25] and introduce what we call the seahorse function.
These notions are defined in appendices A and B, respectively.

In section 2 from a system of two differential equations as a generalization of (1) we
list some useful symmetries and write down the crucial simultaneous linear system as well
as the corresponding Riccati equations. In section 3 the Bäcklund transformation for the
DNLS equation is written down, and N-soliton formulae are given. Particular soliton solutions
both over vacuum and over finite background are discussed in some detail in section 4. A
short discussion on stability is given in section 5 followed by a summary and conclusions in
section 6 where also a comparison with a related treatment of Darboux transformations and
DNLS solitons by Imai [26] is given.

2. Basic equations and symmetries

Let us start from a system of two differential equations,

−iqt + qxx − i(q2r)x = 0 (2)

irt + rxx + i(r2q)x = 0 (3)
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which reduces to the DNLS equation (1) for r = q∗ while the choice r = −q∗ would lead to
(1) with the sign of the nonlinear term changed. There is some advantage to treat q and r as
mutually independent and to require r = ±q∗ afterward by reduction.

The system (2), (3) is invariant under the following transformations:

1. Space reflection,

x̃ = −x t̃ = t q̃ = q r̃ = −r. (4)

2. Time reflection,

x̃ = x t̃ = −t q̃ = r r̃ = −q. (5)

3. Conjugation,

q̃ = r∗ r̃ = q∗. (6)

4. Scale transformation,

x̃ = bx t̃ = b2t q̃ = q/b r̃ = r/b. (7)

5. Gauge transformation,

q̃ = q eiκ (8)

with κ being an arbitrary real constant.

Due to symmetries 1 and 2 the reductions r = q∗ and r = −q∗ are interchanged by space
reflection as well as by time reflection. Thus it is enough to discuss one of these two cases,
and we prefer r = q∗ to get the DNLS equation in the form (1). Symmetry 4 permits us to
normalize the amplitude of a monochromatic wave, and symmetry 5 permits us to ignore a
constant phase.

Equations (2) and (3) are the compatibility conditions of the linear system [11]

∂xφ = (J ζ 2 + Qζ)φ ≡ Uφ (9)

∂tφ = (−2J ζ 4 + V3ζ
3 + V2ζ

2 + V1ζ )φ ≡ V φ (10)

with

φ =
(

ϕ1

ϕ2

)
J =

(−i 0
0 i

)
Q =

(
0 q

r 0

)
(11)

V3 = −2Q V2 = −Jqr V1 =
(

0 −iqx − q2r

irx − r2q 0

)
. (12)

Here ζ is an arbitrary complex number called the spectral parameter. Equations (2) and (3)
are equivalent to the integrability condition Ut − Vx + [U,V ] = 0 of (9) and (10).

A system characterized by (9) is called a quadratic bundle. Gerdzhikov et al [27, 28]
have analysed the mathematical structure of such systems and their connection to completely
integrable Hamiltonian systems including, in particular, the DNLS equation.

The system (9), (10) is covariant under the mapping

ϕ̃1 = ϕ1 ϕ̃2 = −ϕ2 ζ̃ = −ζ. (13)

It is easy to see that the quotient

β ≡ ϕ2

ϕ1
(14)
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fulfils the simultaneous Riccati equations

βx = ζ(r + 2iζβ − qβ2) (15)

βt = ζ(−2ζ 2r + irx − r2q) − 2iζ 2(2ζ 2 + qr)β + ζ(2ζ 2q + iqx + q2r)β2. (16)

The linear system (9), (10) can be replaced by the Riccati system (15), (16) in the sense that
(2) and (3) are the integrability conditions for this Riccati system as well.

It is useful to note that in the case of r = q∗ equations (9) and (10) are invariant under the
mapping

ϕ̃1 = ϕ∗
2 ϕ̃2 = ϕ∗

1 ζ̃ = ζ ∗ (17)

and that, correspondingly, from β being a solution to (15) and (16) it follows that 1/β∗ solves
the same equations with ζ replaced by ζ ∗.

For real ζ it follows from (15) and (16)

∂x(β
∗β) = (· · ·) × (β∗β − 1) ∂t (β

∗β) = (· · ·) × (β∗β − 1) (18)

so that if |β| = 1 holds anywhere the same holds everywhere. The details of the multiplicative
factors (· · ·) are not of interest for our conclusion.

3. Darboux/Bäcklund transformations

Comment concerning the notations. The term Darboux transformation denotes a method to
derive from one solution of some scattering problem—here given by (9)—with specified
potentials q, r a new solution with transformed potentials. When extended to a
simultaneous linear system—here (9) and (10)—Darboux transformations become Bäcklund
transformations which then include a transformation of solutions of the related nonlinear
evolution equation(s)—(2) and (3) in the present case.

Iteration of this procedure leads to a hierarchy of solutions. When starting from trivial
vacuum solutions typically one either arrives at solitons or—if the respective evolution equation
does not admit solitons—one gets singular solutions. With respect to our present example,
however, we shall see that Bäcklund transformations applied to vacuum generate particular
monochromatic waves.

When we start from some solution with an asymptotically non-vanishing potential then,
depending on the choice of parameters, we arrive at solitons over a finite background or at
periodic solutions.

We quote a short list of literature on Darboux/Bäcklund transformations [29–34].

3.1. One single transformation

Now we are considering a spectral problem (9),

φx =
(−iζ 2 ζq(x)

ζ r(x) iζ 2

)
φ ≡ Uφ (19)

and we repeat the approach to Darboux transformations as established in [23]. The quotient
β ≡ ϕ2/ϕ1 solves the Riccati equation

βx = ζ(r + 2iζβ − qβ2). (20)

In order to establish a Darboux transformation we assume that one particular solution
{β1(x), ζ1, q(x), r(x)} to (20) is known, and from this solution we define the matrix

M =
(

ζβ1 −ζ1

−ζ1 ζα1

)
α1 ≡ 1/β1. (21)
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Theorem. From any solution {φ, ζ, q, r} to (9) a new solution {φ̃, ζ, q̃, r̃} is found by the
Darboux transformation

φ̃ = Mφ q̃ = β1(β1q − 2iζ1) r̃ = α1(α1r + 2iζ1). (22)

The proof is straightforward by direct verification.
For later use it is important to note that Mφ = 0 for ζ = ζ1.

Reduction. If r = q∗, ζ1 real and β1 is chosen to be of modulus 1—cf the remark at the end
of section 3—then it follows α1 = β∗

1 , r̃ = q̃∗. That is, the symmetry r = q∗ is conserved.

Bäcklund transformation. It can be confirmed in a straightforward way that the matrix function
V is form invariant under the transformation (22), i.e. Ṽ ≡ (Mt + MV )M−1 is the same as V

but with q, r replaced by q̃, r̃ .

Commutativity. It is important to verify that two Darboux transformations commute. This can
be done in a direct and straightforward way.

3.2. The N-fold Bäcklund transform

Now we return to the spectral problem (9) (with no reduction so far). Given one solution
q(x, t), r(x, t) to (2) and (3) and N solutions {q, r, βk, ζk}, k = 1, . . . , N , to (15) then for the
N-fold Darboux transform the wavefunction is an Nth-order polynomial in ζ ,

φ[N ] =
N∑

k=0

Pkζ
N−kφ. (23)

Below the theorem in section 3.1 it was stated that Mφ = 0 for ζ → ζ1. Together with
commutativity now it follows that

N∑
k=0

Pkζ
N−k
j φj = 0. (24)

From the iteration of (21) and (22) the coefficients Pk get the structure

P2l−1 =
(

0 p2l−1

s2l−1 0

)
P2l =

(
p2l 0
0 s2l

)
pN = sN = −1 (25)

where we took the value −1 in the last equation using the freedom of an arbitrary constant
overall factor.

Equation (24) decays into two separate systems of linear equations for the coefficients pk

and sk , respectively, and these two systems may be solved according to Cramer’s rule. We
have to distinguish whether N is odd or even. For later use we will write down the coefficients
p0 and p1 explicitly, and we will use the notation of Vandermonde-like determinants, see
appendix A.

(i) N odd, N = 2n + 1,

n∑
l=1

p2l−1ζ
2(n−l+1)
j +

n∑
l=0

p2lζ
2n−2l+1
j αj = 1 (26)

n∑
l=1

s2l−1ζ
2(n−l+1)
j +

n∑
l=0

s2l ζ
2n−2l+1
j βj = 1 (27)
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p0 = Vn+1,n

(
1; ζjαj

∣∣ζ 2
j

)
Vn,n+1

(
ζ 2
j ; ζjαj

∣∣ζ 2
j

) (28)

p1 = (−1)n−1
Vn,n+1

(
1; ζjαj

∣∣ζ 2
j

)
Vn,n+1

(
ζ 2
j ; ζjαj

∣∣ζ 2
j

) . (29)

(ii) N even, N = 2n,

n−1∑
l=0

p2l ζ
2(n−l)
j +

n∑
l=1

p2l−1ζ
2(n−l)+1
j βj = 1 (30)

n−1∑
l=0

s2l ζ
2(n−l)

j +
n∑

l=1

s2l−1ζ
2(n−l)+1
j αj = 1 (31)

p0 = (−1)n−1
Vnn

(
1; ζjβj

∣∣ζ 2
j

)
Vnn

(
ζ 2
j ; ζjβj

∣∣ζ 2
j

) (32)

p1 = −Vn+1,n−1
(
1; ζjβj

∣∣ζ 2
j

)
Vnn

(
ζ 2
j ; ζjβj

∣∣ζ 2
j

) . (33)

In both cases—N odd or even—s0 and s1 are easily found from the respective formulae for p0

and p1 because it holds generally

sk = pk(α ←→ β). (34)

Let us write the transformed spectral problem in the form

φ[N ]
x =

( −iζ 2 ζq [N ](x)

ζ r [N ](x) iζ 2

)
φ ≡ U [N ]φ. (35)

Substitution of (23) into (9) and (35) and comparison of powers in ζ lead to

[P0, J ] = 0

[P1, J ] + P0Q − Q[N ]P0 = 0

Pk−1,x + [Pk+1, J ] + PkQ − Q[N ]Pk = 0 k = 1, . . . , N − 1

PN−1,x + PNQ − Q[N ]PN = 0.

(36)

and from the second equation of this system we get

q [N ] = p0q + 2ip1

s0
r [N ] = s0r − 2is1

p0
. (37)

When we choose the reduction r = q∗ we have to take the eigenvalues as real or as pairs of
complex conjugate values and to choose

(i) |βj | = 1 for real ζj or
(ii) βl = 1/β∗

k = α∗
k when ζl = ζ ∗

k .

Then we get s0 = p∗
0 , s1 = p∗

1 . Consequently, the required symmetry is conserved. The above
formulae determine the N-fold Darboux transformation. When we ‘switch on’ the time t we
know from subsection 4.1 that each of the N single transformation steps becomes a Bäcklund
transformation, i.e. it transforms the simultaneous system (9), (10). Consequently, our result
gives the N-fold Bäcklund transformation as well.
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4. Particular solutions

4.1. Bäcklund transformations applied to the vacuum

For q = r = 0 the Riccati equations (15) and (16) are solved by

β = C e2iζ 2(x−2ζ 2t) (38)

with C being an arbitrary integration constant.

Case 1. N = 1. For one single Bäcklund transformation—due to the required reduction
r = q∗, cf subsection 4.1—we have to take ζ = ζ1 real and C of modulus 1. Ignoring an
arbitrary phase we take C = 1,

β1 = e2iζ 2
1 (x−2ζ 2

1 t). (39)

The result of the Bäcklund transformation is then simply found from (22),

q [1] = −2iζ1β1. (40)

This, of course, is not a soliton but a monochromatic wave. It is more special compared to the
monochromatic wave given below, see (49) and (50). Principally, we could stop here and go to
the next subsection where Bäcklund transformations are applied to the general monochromatic
wave. On the other hand, however, it is worth to continue and find formulae which are hidden
as limiting cases in more general manifolds of solutions given later.

Case 2. N = 2. We have to distinguish real eigenvalues and complex conjugate eigenvalues.
But we may combine both cases by taking

ζ1 = l + m ζ2 = l − m (41)

(2a) l,m real or (2b) l = ξ m = iη ξ and η real. (42)

By specification of (32), (33) and (37) to n = 1 we find

q [2] = −2i

(
ζ 2

1 − ζ 2
2

)
(ζ1β1 − ζ2β2)

(ζ1β2 − ζ2β1)2
. (43)

Now let us write 2ζ 2
1,2

(
x − 2ζ 2

1,2t
) = F ± G, i.e.

F = 2(l2 + m2)x − 4(l4 + m4 + 6l2m2)t
(44)

G = 4lm(x − 4(l2 + m2)t).

Then (43) takes the form

q [2] = −4ilm e−iF m cos G + il sin G

(m cos G − il sin G)2

= −4ilm e−iF (m cos G + il sin G)3

(m2 + (l2 − m2) sin2 G)2 . (45)

This formula holds in both cases (2a) and (2b). For (2a) l,m, F,G are real. For (2b) F again
is real while G is purely imaginary, G = i
. Thus (45) in the latter case reads

q [2] = −4iξη e−iF η cosh 
 + iξ sinh 


(η cosh 
 − iξ sinh 
)2

= −4iξη e−iF (η cosh 
 + iξ sinh 
)3

(η2 + (ξ2 + η2) sinh2 
)2 . (46)
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This is a localized solution of stationary shape. We state that such a soliton over vacuum is
generated by a two-fold Bäcklund transformation. It was first found by Mjølhus [2] and then
recovered by Kaup and Newell [11] in the frame of the inverse scattering formalism.

Case 3. N-phase solution and n-soliton solution. Let us choose N = 2n real eigenvalues ζj

and define

βj = exp
[
2iζ 2

j

(
x − 2ζ 2

j t
)]

. (47)

Then from (32)–(34) and (37) we find

q [2n] = (−1)n−1
Vn+1,n−1

(
1; ζjβj

∣∣ζ 2
j

)
Vnn

(
1; ζjβj

∣∣ζ 2
j

)
[
Vnn

(
ζj ; βj

∣∣ζ 2
j

)]2 . (48)

That is, the solution is a rational function of the exponentials βj , j = 1, . . . , 2n. (Note that
αj ≡ 1/βj .) Specified to n = 1 this solution coincides with (45), l and m real. Also we may
take n pairs of complex conjugate eigenvalues ζj . Then by (48) we get an n-soliton solution. Of
course, we might also choose M real eigenvalues together with m pairs of complex conjugate
ones to get an m-soliton solution over an M-phase solution.

4.2. Bäcklund transformations applied to a monochromatic wave

It is easy to see that the monochromatic wave

q = a ei(k0x−ω0t) r = q∗ a and k real (49)

fulfils (2) and (3) provided the nonlinear dispersion relation

ω0 = k0(a
2 − k0) (50)

is fulfilled. The more particular monochromatic wave (40) is characterized by a2 = 2k0.
We wish to solve (15) and (16) with q given by (49). If we write

β = −iγ exp[ik0(−x + (a2 − k0)t)] (51)

we arrive at a simultaneous Riccati system with constant coefficients,

i∂xγ = −2wγ − ζa(1 + γ 2) w ≡ ζ 2 + k0/2 (52)

i∂tγ = (2ζ 2 + a2 − k0)[2wγ + ζa(1 + γ 2)]. (53)

Its general solution may be written in terms of the so-called seahorse function as it is defined
in three variants S,S1,S2 in appendix B,

γ = S(A, dy/2) = S1(B, dy) = S2(κ, dy). (54)

Here we have used the abbreviations

A = −w + id

ζa
= eiκ B = ζa + w

d
(55)

y = x − (2ζ 2 + a2 − k0)t + y0 d =
√

a2ζ 2 − w2 (56)

with y0 being a complex integration constant.
For ζ and d being real A is of modulus 1. If we then require that γ should be of modulus

1 the imaginary part of 2dy0 has to be a multiple of π and—due to property (2) of S in
appendix B—we get two solutions

γε = εS(εA, 2 dy) ε = ±1 (57)

with y defined by (56) where y0 is now taken as real. For ζ real and d imaginary A is real.
With y0 assumed as real then—due to the property (3.2), see appendix B—it holds as well
|γ | = 1.
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Case 1. N = 1. For one real eigenvalue ζ1 by (22) we get the solution

q [1] = −γ1(γ1a + 2ζ1) exp[−ik0(x − (a2 − k0)t)] (58)

with the convention that γ1, A1, y1, . . . denote γ,A, y, . . . defined above with ζ replaced by
ζ1. y0 is put equal to zero. Here a > 0, k, ζ1 are free real parameters. For d2

1 < 0 (58) is a
periodic solution. For d2

1 > 0 the related intensity may be written as

|q [1]|2 = |γ1a + 2ζ1|2

= a2 − 2k0 − 4d2
1

w1 − εζ1a cosh(2d1y1)
. (59)

If we write

f± ≡ ζ1a ± w1 w1 = (
ζ 2

1 + k0/2
)

(60)

solitons and periodic solutions are separated in the ζ1–k0 plane by the two parabolas f+ = 0
and f− = 0, see figure 1. For each point in the region d2

1 ≡ f+f− > 0 we get both a bright and
a dark soliton depending on the sign factor ε. It can be seen, however, that the solution with ε

being changed is the same as that with the sign of ζ1 being changed. Thus we may take ε = +1
without loss of generality. At the borderf+ = 0 or f− = 0 one finds one solution of Lorentzian
shape, the other of constant amplitude. Note that formula (59) does not contain solitons over
vacuum because d2

1 = f+f− � 0 for a2 − 2k = 0. In the limit k = a2/2, ζ = a/2, ε = +1,
however, one gets a Lorentzian pulse over vacuum.

Case 2. N = 2. Again we assume that either both the eigenvalues ζ1, ζ2 are real or one is
complex conjugate to the other. The result of a two-fold Bäcklund transformation commonly
for both these cases may be written as

q [2] = K1a + 2K3

K2
2

K1 exp[ik0(x − (a2 − k0)t] (61)

K1 = ζ1γ1 − ζ2γ2 K2 = ζ1γ2 − ζ2γ1 K3 = ζ 2
1 − ζ 2

2 (62)

γj = S(Aj , 2djyj ) j = 1, 2 (63)

Aj = (−wj + idj )/ζja (64)

dj =
√

ζ 2
j a2 − w2

j (65)

yj = x − (
2ζ 2

j + a2 − k0
)
t + y0j (66)

(2a) ζ1, ζ2, y01, y02 real or (2b) ζ2 = ζ ∗
1 y02 = y∗

01. (67)

Consequently, it holds either (2a) |γ1| = |γ2| = 1 or (2b) γ2γ
∗
1 = 1. Commonly for (2a) and

(2b) the intensity may be written in the simple form

|q [2]|2 = |a + 2K3/K1|2. (68)

The solutions under (2b) coincide with the ‘two-parametric solitons’ of Mjølhus [3, 4].
We did not succeed in proving this analytically. But we checked numerically that b(x, t)

given by equations (46) and (47) in [4] coincides with our q(x, t) up to some translation in
x and t.

Due to the choice of real eigenvalues ζ1, ζ2 above formulae (61)–(68) may describe the
collision of two bright solitons, figure 2(a), of two dark solitons, figure 2(b), or of one bright
and one dark soliton, figure 2(c). Furthermore, with complex conjugate eigenvalues, we find
a breather-type solution, see figure 2(d).
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2
0k

Figure 1. Regions for solitons and periodic solutions in the ζ1–k0 plane, where k0 is the wave
number of the seed solution and ζ1 is the real parameter. The regions are separated by the two
parabolas f+ = 0 and f− = 0, see equation (60).

(a) (b)

(d)(c)

Figure 2. Four 3D plots of the two-soliton formula (68). (a) Collision of two bright solitons.
k0 = −0.15, ζ1 = −1/3, ζ2 = 2/3. (b) Collision of two dark solitons. k0 = −0.5, ζ1 = 1/3, ζ2 =
−2/3. (c) Collision of a bright soliton with a dark soliton. k0 = −0.1, ζ1 = −1/3, ζ2 = −2/3.
(d ) Breather-type solution. a = 1, k = −0.15, ζ1 = 1 + i, ζ2 = 1 − i.

Case 3. N = 2n. Clearly, the general formulae of subsection 4.2 may be specified to a
monochromatic wave as the seed function and the reduction r = q∗. For sake of shortness
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we will do it for even N only. Let all eigenvalues ζj , j = 1, . . . , 2n, be either real or complex
conjugate pairs, ζl = ζ ∗

k , and take the integration constants y0j as real or complex conjugate
pairs, respectively. The functions γj and all auxiliary entities with subscripts j are given as
before by (63)–(66), and the γj are fulfilling either |γj | = 1 or, pairwise, γlγ

∗
k = 1. Then,

corresponding to (51), we get

βj = −iγj exp[ik0(−x + (a2 − k0)t)] (69)

which has to be substituted into (32) and (33). Due to (A5), see appendix A, we get

p0 = (−1)n−1
Vnn

(
1; ζjγj

∣∣ζ 2
j

)
Vnn

(
ζ 2
j ; ζjγj

∣∣ζ 2
j

) (70)

p1 = −ip̃1 eik0(x−(a2−k0)t) p̃1 = Vn+1,n−1
(
1; ζjγj

∣∣ζ 2
j

)
Vnn

(
ζ 2
j ; ζjγj

∣∣ζ 2
j

) (71)

and the 2n-soliton solution is finally given as

q [2n] = ap0 + 2p̃1

p∗
0

eik0(x−(a2−k0)t). (72)

Let us stay for a moment at this formula. Typically, N-soliton formulae are given as rational
functions of polynomials of exponential functions. Their numerical evaluation in some large
spacetime region is then made difficult because the exponential functions may become very
large or very small. Also it is not easy to discuss the asymptotic behaviour. Here, however,
up to a simple phase factor the formula is given in terms of functions γj (x, t) with rather
restricted regions of variability, cf appendix B. When the parameters are fixed such that
periodic functions γj are excluded, we get a system of solitons and breathers with well-
defined asymptotic directions of propagation. The asymptotic behaviour at any spacetime
direction different from these specified ones then is simply that all γ become constants, and
q [2n] becomes a monochromatic wave. Compared to the seed solution, q, frequency, wave
number and amplitude of the asymptotic wave remain unchanged. Note, however, that for N
odd the wave number changes sign and the asymptotic amplitude is changed.

Three examples of the collision of eight solitons are depicted in figure 3. From the middle
part, figure 3(b), we see that the chain of eight solitons, alternately bright and dark, can result
in a steepening of intensity by one order of magnitude in the collision centre.

5. Stability

The stability of DNLS solitons has been investigated by Mjølhus and co-workers [3, 35].
Their main results may be summarized as follows: one-soliton states are stable except when
they lie on the border of their region of existence as indicated in figure 1, i.e. when they are of
algebraic type. Breather-type solitons with two complex-conjugate eigenvalues ζ2 = ζ ∗

1 are
stable as well. But in the limit ζ2 = ζ1 = real, when there is only one degenerate eigenvalue,
stability is lost.

We will add a remark concerning the asymptotic state. Clearly, a necessary condition for
a soliton over a finite background to be stable is that its asymptotic states for x → ±∞ must
be stable. These states are monochromatic waves with equal amplitudes left and right but
with some difference in their phases. The stability of DNLS waves of the form (49) has been
investigated in the literature by two ways.
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(a) (b) (c)

1

Figure 3. Eight-soliton solutions. (a) Eight bright solitons. k0 = −0.2, ζ a
j = (−0.3, 0.45, −0.55,

0.63, −0.7, 0.77, −0.84, 0.9). (b) Four bright and four dark solitons. k = −0.5, ζ b
j equidistant,

ζ1 = 0.19, ζ8 = 0.82. (c) Eight dark solitons. k0 = −0.2, ζ c
j = −ζ a

j .

(i) Linear stability [20]. The DNLS equation (1) is taken for the wave q = a exp[ik(x −
(a2 − k)t)] plus some perturbation and is linearized with respect to this perturbation. The
condition that there are no exponentially growing modes is then found to be

k < a2/2. (73)
(ii) Stability against finite harmonic perturbations [2, 36]. The ansatz

q = a(x, t) eiθ(x,t) θx = k θt = −ω (74)

is substituted in (1). Together with kt = ωx and by neglecting the second derivative of a,
one finds a first-order quasi-linear system of partial differential equations for a2(x, t) and
k(x, t). The stability criterion then is that this system has to be of hyperbolic type, and
this is fulfilled just under the same condition (73).

Applied to the seed solution (49) the condition (73) reads k0 < a2/2. From figure 1
then we may see that solitons can be generated only from stable seed solutions. We remember
that the wave number changes sign under the Bäcklund transformation, cf (58), and that the
asymptotic amplitude of the transformed solution becomes

√
a2 − 2k0 . Thus the condition of

asymptotic stability reads −k0 < a2/2 − k0 and is trivially fulfilled. That is, the asymptotic
states of all one-soliton solutions are stable. A numerical test whether or not DNLS solitons
remain stable in the parent system, from which the DNLS equation has been derived, has been
made in [7] for the example of magnetohydrodynamic waves propagating in a high-β plasma.
Large-amplitude DNLS solitons, introduced as initial conditions for the fully nonlinear Hall-
MHD system, exhibited a remarkable degree of stability, with some differences in favour of
dark solitons.

6. Summary and conclusions

By use of a rather simple and elementary approach to Darboux transformations we derived
formulae for N-soliton solutions both over vacuum and over a finite background. These
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formulae are written in terms of Vandermonde-like determinants. In order to estimate the
advantage of these determinants and their structural properties the reader should have in
mind that for one of the three eight-soliton solutions depicted in figure 3 one has to evaluate
determinants of 16 × 16 matrices with 16! ∼ 2 × 1013 terms. Due to the reduction formula
(A2), appendix A, for computing V44, this huge number is reduced to

(16
8

) = 12 870 terms
so that the problem becomes tractable. Also, it proves to be advantageous to introduce an
elementary auxiliary function, S(A, z), called the seahorse function which approaches finite
values A or 1/A for |x| → +∞ or −∞, respectively.

Imai [26] has developed a Darboux/Bäcklund transformation technique which is similar
to ours. His treatment is more general insofar as he deals with some class of compatible linear
systems. Our approach, however, seems to be simpler, and our results are more explicit and
more appropriate for numerical evaluation. His classification of DNLS solitons is incomplete
because only solutions generated by multiple Bäcklund transformations starting from the
vacuum are considered. As we have pointed out in subsection 5.2 only a special type of
monochromatic waves can be generated in this way and, consequently, only a submanifold of
the whole soliton hierarchy can be generated when starting from the zero solution.
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Appendix A. Vandermonde-like determinants

Vandermonde-like determinants are defined as follows [25]:

VMN(ar; br |xr) :=∣∣∣∣∣∣∣∣

a1 a1x1 · · · a1x
M−1
1 b1 b1x1 · · · b1x

N−1
1

a2 a2x2 · · · a2x
M−1
2 b2 b2x2 · · · b2x

N−1
2

· · · · · · · · · · · · · · · · · · · · · · · ·
aM+N aM+NxM+N · · · aM+NxM−1

M+N bM+N bM+NxM+N · · · bM+NxN−1
M+N

∣∣∣∣∣∣∣∣
(A1)

where r = 1, 2, . . . , (M + N). These determinants have several remarkable structural
properties listed in [25]. In particular, any Vandermonde-like determinant VMN can be
expressed as a sum over binary products of genuine Vandermonde determinants VN . This is
done by the reduction formula

VMN(ar; br |xr) =
∑
P

εP

M∏
j=1

as(j)

M+N∏
k=M+1

bs(k)VM(xs(1) . . . xs(M))VN(xs(N+1) . . . xs(M+N)). (A2)

The sum goes over all permutations P = (s(1), . . . , s(M +N)) of (1, 2, . . . ,M +N) such that
s(i) < s(j) for i < j � N as well as for N < i < j . Permutations of such a type are called
shuffles [37]. εP = +1 for P even or −1 for P odd. The (genuine) Vandermonde determinants
VN are defined as

VN(x1, . . . , xN) :=

∣∣∣∣∣∣∣∣∣

1 x1 x2
1 · · · xN−1

1

1 x2 x2
2 · · · xN−1

2

· · · · · · · · · · · · · · ·
1 xN x2

N · · · xN−1
N

∣∣∣∣∣∣∣∣∣
. (A3)
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Figure 4. The seahorse function. For some straight lines in the complex z-plane the images of the
mapping z → S(A, z),A = 1 + i, are depicted. In each of the nine parts of the figure the angle of
declination against the real z-axis is indicated.

It is well known and can be easily checked directly that VN can be written as a product of
differences,

VN(x1, . . . , xN) =
∏
i>j

(xi − xj ). (A4)

From the definition (A1) it is obvious that a common factor of all br could be extracted,

VMN(ar; brf |xr) = f NVMN(ar; br |xr). (A5)

Appendix B. The seahorse function

Let us define three functions S,S1,S2,

S(A, z) ≡ A exp(z) + 1

exp(z) + A
(B1)

S1(B, z) ≡ coth(z/2) + iB

coth(z/2) − iB
(B2)

S2(κ, z) ≡ cosh[(z + iκ)/2]

cosh[(z − iκ)/2]
. (B3)

Then connections between the parameters A,B, κ may be postulated,

A = exp[iκ] B = i
1 − A

1 + A
= tan(κ/2). (B4)
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such that in any case we get the same function in z but with redefinition of the respective
parameter.

S(A, z) solves the Riccati equation

∂zS = − A

A2 − 1
(1 + S2) +

A2 + 1

A2 − 1
S. (B5)

We list some properties of S(A, z). With respect to our application we are interested, in
particular, in the images of straight lines.

(1) limRe z→∞ S(A, z) = A, limRe z→−∞ S(A, z) = 1/A

(2) S(A, z + iπ) = −S(−A, z).
(3.1) For |A| = 1 and real z as well as
(3.2) for real A and imaginary z it holds |S(A, z)| = 1.

(4) The image of the real axis in the z-plane is an arc of a circle going from 1/A to A.
(5) The image of a piece of a straight line of length 2π parallel to the imaginary axis is a

circle.
(6) The image of any straight line not parallel to one of the axes is an S-shaped curve

approaching 1/A and A on spirals, see figure 4 for an example. With a little imagination
the reader may see there a seahorse.
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